منابع مشابه
Lebesgue Measure
How do we measure the ”size” of a set in IR? Let’s start with the simplest ones: intervals. Obviously, the natural candidate for a measure of an interval is its length, which is used frequently in differentiation and integration. For any bounded interval I (open, closed, half-open) with endpoints a and b (a ≤ b), the length of I is defined by `(I) = b − a. Of course, the length of any unbounded...
متن کاملLebesgue functions and Lebesgue constants in polynomial interpolation
The Lebesgue constant is a valuable numerical instrument for linear interpolation because it provides a measure of how close the interpolant of a function is to the best polynomial approximant of the function. Moreover, if the interpolant is computed by using the Lagrange basis, then the Lebesgue constant also expresses the conditioning of the interpolation problem. In addition, many publicatio...
متن کاملRandomness – beyond Lebesgue Measure
Much of the recent research on algorithmic randomness has focused on randomness for Lebesgue measure. While, from a computability theoretic point of view, the picture remains unchanged if one passes to arbitrary computable measures, interesting phenomena occur if one studies the the set of reals which are random for an arbitrary (continuous) probability measure or a generalized Hausdorff measur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fundamenta Mathematicae
سال: 1971
ISSN: 0016-2736,1730-6329
DOI: 10.4064/fm-70-1-1-6